

EXPLORATORY RESEARCH: CORE POWERTRAIN MATERIALS

DEVELOPMENT OF HIGH TEMPERATURE SAMPLE ENVIRONMENT FOR ADVANCED ALLOY CHARACTERIZATION USING HIGH-ENERGY X-RAY TECHNIQUES

Project ID: mat179

PI: ANDREW CHUANG

Team Members: Peter Kenesei, Jonathon Almer, Dileep Singh X-ray Science Division, Argonne National Laboratory 2020 DOE Vehicle Technology Office Annual Merit Review June 1-4, 2020 Arlington, VA

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start: March 2019
- Project end: March 2020
- 90% complete

Budget

FY19 = \$100 K (DOE)

Project Partners

 Applied Materials Division, Argonne National Laboratory

Barriers

- Performance: Flexible heating device for various material system and specimen geometry. Expand temperature limit up to 1400 °C with high heating and cooling rate (>10 °C /sec) to probe various part of TTT diagram.
- Thermal stability: Device should have minimal thermal load to the surroundings. Requires high thermal stability to minimize motion blur and improve image quality

RELEVANCE

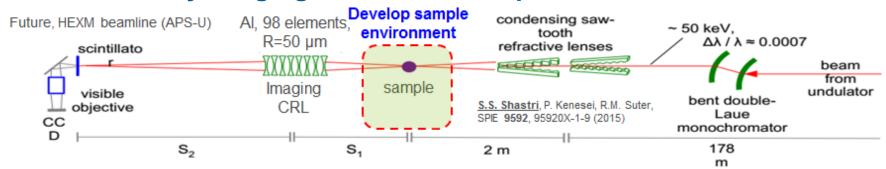
Develop characterization capability to support alloy development research

Motivation:

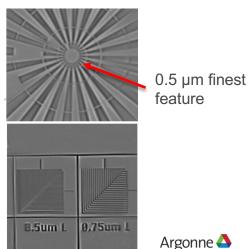
- A strong and growing interest to access the most advanced synchrotron X-ray techniques for in-situ material characterization.
- To understand material behavior under in-service conditions requires information at elevated temperature

Objectives:

- Develop flexible high temperature sample environment that allows µm stability for high resolution,
 zoom-in/out imaging and diffraction techniques
- Provide improved sample environment accessibility and flexible sample environment, avoid duplicate effort among community, enhance scientific productivity, and enable expansion of in situ testing capabilities.


Impact

- Facilitate beamline access for advance powertrain materials research
- Provide the powertrain community with access to a wide range of X-ray techniques at the APS.



APPROACH

Full-field X-ray Imaging at Elevated Temperature

- Locate region of interest in the bulk sample with regular μtomography (resolution 1~2 μm)
- Use x-ray lens view internal structure of polycrystalline materials such as voids, cracks and inclusions. (resolution ~0.5 μm [now], ~0.1 μm [future])
- Proposed project adds high temperature environment to the high energy x-ray beamline to study material under in-service condition

APPROACH

Rapid heating/cooling with high thermal stability

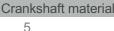
Induction based heating

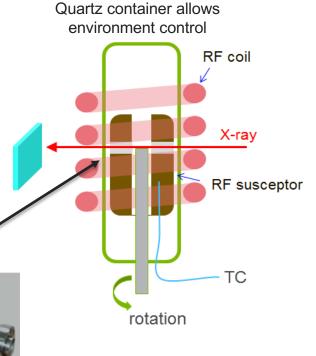
Flexible heating geometry with custom coil

High heating and cooling rate (> 20°C/sec)

Heat only the specimen, minimize heat load to the environment. Enables µm level imaging.

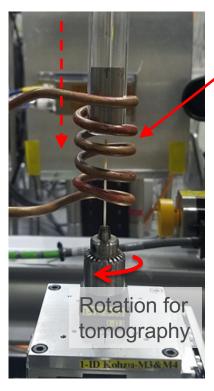
Use susceptor to increase temperature uniformity

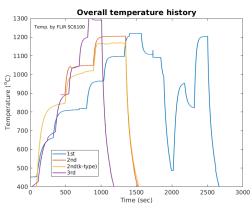

Closed-loop temperature control.


Tempera monitor by thermocouple and thermo

camera

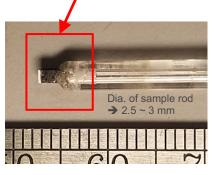
Drive shaft material





Technical Accomplishments

HIGH TEMPERATURE 3D IMAGING SETUP

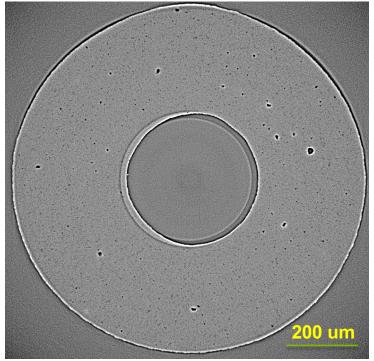


- Susceptor in quartz tube.
- Whole structure moves down to cover sample.
- Sample is placed at center of susceptor.

Device heating/cooling rate >25 °C/sec

Sample on ceramic(quartz) rod. Glue with high temperature paste

Technical Accomplishments


TOMOGRAPHY AT HIGH TEMPERATURE

Flush with Ar during experiment

Tomography Image at 900 °C

PROJECT MILESTONE AND COLLABORATIONS

Milestone

Milestone	Description	Status
System design, development and test	 Design and construct the system Test in-house without X-ray 	 Close loop temperature control system finished and tested Reach temperature target of 1350 °C with stability ± 5°C
Commission the system to work with existing beamline equipment	 Test the system at the beamline Conduct x-ray imaging and diffraction experiment and elevated temperature 	 Conducted two user experiment Collect tomography image at 900°C and diffraction at 1150°C

Collaborations

- MINES Saint-Etienne, France (Andras Borbely) In-situ study of recovery and recrystallization of an AlScZr alloy
- Caltech, CA, USA (Benjamin Herren, Katherine Faber) Damage Evolution in Ceramic-Matrix Composite/Environmental Barrier Coating Systems

PROPOSED FUTURE RESEARCH*

(*Any proposed future work is subject to change based on funding levels)

 Add and integrate a compact load frame to the system to characterize engineering material under load at elevated temperature.

PROJECT SUMMARY

- Rapid heating and cooling cell for high-resolution, high-energy x-ray imaging and diffraction techniques has been developed.
- The system utilizes the concept of induction heating to enable rapid heating and cooling (> 25°C/sec) capability while minimizing the thermal load to the surrounding to achieve ~µm image resolution.
- Proof of concept experiment has been done in late 2019. In a user's in-situ high temperature X-ray experiment, samples (<1g) was heated up to 1250 °C for diffraction experiment and 900 °C for tomography experiment.

